Examination Scheme | | Semester-I (Dec | 2. 2011) | | | | |---------|-----------------|---|------------------------|------------|-------------| | | | | Examination | | | | Sr. No. | Course Code | Subject | Theoretical Evaluation | | | | | | | Theory | Internal | Total | | | | | | assessment | | | 1 | MBT-101 | Cell Biology | 80 | 20 | 100 | | 2 | MBT-102 | Biomolecules and Metabolism | 80 | 20 | 100 | | 3 | MBT-103 | Microbiology | 80 | 20 | 100 | | 4 | MBT-104 | Molecular Biology | 80 | 20 | 100 | | 5 | MBE-105* | Biostatistics* | 80 | 20 | 100 | | 6 | MBE-106* | Computer application in Biostatistics* | 80 | 20 | 100 | | 7 | MBT-107 | Communicative Skills | 0 | 50 | 50 | | 8 | MBT-108 | Lab Course- I (Based on MBT 101-102, MBE 105/106) | 0 | 50 | 50 | | 9 | MBT-109 | Lab Course- II (Based on MBT 103- 104) | 0 | 50 | 50 | | 10 | MBT-110 | Self Study Paper | Grade based | | Grade based | | | То | tal Marks | | | 650 | ^{*} Choice based paper: Students need to take one paper out of the choice given. # M.Sc. Medical Biotechnology Semester—I # Course Title: Cell Biology Course No. MBT 101 MM. Th 80 + IA 20 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. # **Theory** ## **UNIT I** Diversity of cell size and shape. Cell Theory. Structure of Prokaryotic and Eukaryotic cells- Isolation and growth of cells. Microscopic techniques for study of cells. Sub-cellular fractionation and criteria of functional integrity ## **UNIT II** Cellular organelles- Plasma membrane, cell wall, their structural organization Mitochondria, Chloroplast; Nucleus and other organelles and their organization. Transport of nutrients, ions and macromolecules across membrane. ## **UNIT III** Cellular energy transactions - role of mitochondria and chloroplast Cell cycle - molecular events and model systems Cellular responses to environmental signals in plants and animals- mechanisms of signal transduction #### **UNIT IV** Cell motility - cilia, flagella of eukaryotes and prokaryotes Biology of cancer Metabolite pathways and their regulation Biosynthesis of proteins in Eukaryotic cell, Co- and post-translational modification, intracellular protein traffic. ## **UNIT V** Cellular basis of differentiation and development-mitosis, gametogenesis and fertilization. Development in Drosophila and Arabidopsis, Spatial and temporal regulation of Gene expression. Brief introduction to the Life Cycle and Molecular Biology of some important pathogen of AIDS, Malaria, Hepatitis, Tuberculosis, Filaria, Kalazar. - 1) Microscopy: Bright field, phase contrast & Fluorescence Microscopy. - 2) Microtomy - 3) Instrumental methods for Cell Biology - 4) Sub cellular fractionation and marker enzymes. - 5) Histochemical techniques - 6) Mitosis & Meiosis # M.Sc. Medical Biotechnology Semester—I # Course Title: Biomolecules and metabolism Course No. MBT 102 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. ## **Theory** MM. Th 80 + IA 20 #### UNIT I Chemical foundations of Biology –pH, pK, acids, bases, buffers, weak bonds, covalent bonds. Principles of thermodynamics. Classes of organic compounds and functional groups-atomic and molecular dimensions, space filling and ball and stick models. Macro molecular and supra molecular assemblies. ## UNIT I I Amino acids and peptides-classification, chemical reactions and physical properties Sugars - classification and reactions Heterocyclic compounds-and secondary metabolites in living systems - nucleotides, pigments, isoprenoids Separation techniques for different biomolecules ## **UNIT III** Physical techniques in proteins, nucleic acids and polysaccharides structure analysis (UV, IR, MMR, LASER, MASS, Fluorescence spectroscopy, Differential calorimetry, X - ray Crystallography, Ultra Centrifugation, Electron cryomicrography, Scanning Tunneling microscopy. ## **UNIT IV** Lipids- classification, structure and functions Proteins-protein and protein legand interactions, end group analysis, hierarchy in structure, Ramachandran map. Conformational properties of polynucleotides, Polysaccharides - types, secondary and tertiary structural features, analysis- theoretical and experimental; Protein folding - biophysical and cellular aspects. ## **UNIT V** Water and its properties, enzymes coenzymes, metabolism of carbohydrate, amino acids and lipids, in born errors of metabolism. Bio-energetics and oxidative phosphorylation. Blood clotting – biochemistry, body fluids – pH and acid base balance and their importance in clinical biochemistry, muscle contraction. Techniques in the study of proteins, carbohydrates and lipids. - 1) Titration of amino acids - 2) Colorimetric determination of pK - 3) Model building using space filling/ball and stick models - 4) Reactions of amino acids, sugars and lipids - 5) Isolation, purity determination and quantitation of cholesterol, DNA and mRNA - 6) Quantitation of Proteins and Sugars - 7) Analysis of oils-iodine number, saponification value, acid number - 8) UV, Visible, Fluorescence and IR spectroscopy, Absorption spectra - 9) Separation techniques Centrifugation, Chromatography (Gel permeation, Ion exchange, TLC etc. and Electrophore # M.Sc. Medical Biotechnology Semester—I Course Title: Microbiology Course No. MBT 103 MM. Th 80 + IA 20 Course No. MBT 103 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. **Theory** #### UNIT I The Beginning of Microbiology Discovery of the microbial world by Antony van Leeuwenhoek: Controversy over spontaneous generation, Role of microorganisms in transformation of organic matter and in the causation of diseases Development of pure culture methods Enrichment culture methods, developments of microbiology in the twentieth century. Methods in Microbiology Pure culture techniques; Theory and practice of sterilization; Principles of microbial nutrition Construction of culture media; Enrichment culture techniques for isolation of chemoautotrophs,' chemoheterotrophs and photosynthetic microorganisms. Microbial Evolution, Systematic and Taxonomy, Evolution of earth and earlier life forms; Primitive organisms and their metabolic strategies and molecular coding; New approaches to bacterial taxonomy classification including ribotypeing Ribosomal RNA sequencing; Characteristics of primary domains Taxonomy, Nomenclature and Bergey's Manual ## **UNIT II** Microbial Growth The definition of growth, mathematical expression of growth, mathematical expression of growth, growth curve, measurement of growth and growth yields; Synchronous growth; Continuous culture; Growth as affected by environmental factors like temperature, acidity, alkalinity, water availability and oxygen; Culture collection and maintenance of cultures Overview of Basic Metabolism & Microbial Nutrition Metabolic Diversity among Microorganisms Photosynthesis in microorganisms; Role of Chlorophylls, carotenoids and phycobilins; Calvin cycle; Chemolithotrophy; Hydrogen - iron - nitrite - oxidizing bacteria; Nitrate and sulfate reduction; Methanogenesis and acetogenesis; Fermentations - diversity, syntrophy, role of anoxic decompositions; Nitrogen metabolism;" Nitrogen fixation; Hydrocarbon transformation ## **UNIT III** Prokaryotic Diversity Bacteria: Purple and green bacteria; Cyanobacteria; Homoacetogenic bacteria; Acetic acid bacteria; Budding and appendaged bacteria; Spirilla; Spirochaetes; Gliding and sheathed bacteria; Pseudomonads; Lactic and propionic acid bacteria; Endospore forming rods and cocci: Mycobacteria: Rickettsias, Chlamydies and Mycoplasma. Archaea: Archaea as earliest Life forms: Halophiles; Methanogens;' Hyperthermophilic urchaea; Thermoplasma Eukaryotic: Algae, Fungi, Slime molds and Protozoa. #### **UNIT IV** Viruses: Bacterial, Plant, Animal and Tumor viruses; Discovery, classification and structure of viruses; Lysogeny: DNA viruses: Positive strand Negative strand, and double stranded RNA viruses; Replication: Examples of Herpes, Pox, Adenoviruses, Retroviruses, Viroids and Prions Prokaryotic Cells: Structure-function Cell walls of eubacteria (peptidoglycan) and related molecules; Outer-membrane of Gram negative bacteria; Cell wall and cell membrane synthesis; Flagella and motility; Cell inclusions like end spores, gas vesicles Chemotherapy/Antibiotics Antimicrobial agents; Sulfa drugs; Antibiotics: Penicillins and Cephalosporins; Broad spectrum antibiotics; Antibiotics from prokaryotes; Antifungal antibiotics; Mode of action; Resistance to antibiotics #### **UNIT V** Genes, Mutation and. Mutagenesis UV and chemical mutagenesis Types of mutation; Ames test for mutagenesis; Methods of genetic analysis Bacterial Genetic System Transformation, Conjugation, Transduction, Recombination, Plasmids and Transposons, Bacterial genetics map with reference to E.coli Viruses and Their Genetic System Phage I and its life cycle: RNA phages RNA viruses; Retroviruses Genetic systems of Yeast and Neurospora Extra-Chromosomal Inheritance - 1) Preparation of liquid and solid media for growth of microorganisms - 2) Isolation and maintenance .of organisms by plating, streaking and serial dilution - 3) Methods. Slants and stab cultures. Storage of microorganisms - 4) Isolation of pure cultures from soil and water - 5) Growth; Growth curve; Measurement of bacterial' population by turbidometry and - 6) Serial dilution methods. Effect of temperature, pH and carbon und nitrogen sources on growth. - 7) Microscopic examination of bacteria, yeast and molds and study of organisms by - 8) Gram stain, Acid fast stain and staining for spores - 9) Study of mutations by Ames test. - 10) Assay of antibiotics und demonstration of antibiotic resistance - 11) Analysis of water for potability and determination of MPN - 12) Bacterial transformation - 13) Biochemical characterization of selected microbes - 14) Transduction - 15) One step growth curve of coliphage - 16) Isolation of Plasmids - 17) CO2 fixation by photosynthetic microbes # M.Sc. Medical Biotechnology Semester—I # Course Title: Molecular Biology Course No. MBT 104 Time: 3h MM. Th 80 + IA 20 NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. **Theory** #### UNIT I **DNA Replication**: Prokaryotic and eukaryotic DNA replication, Mechanics of DNA replication, enzymes and accessory proteins involved in DNA replication and DNA repair. **Transcription:** Prokaryotic transcription, Eukaryotic transcription, RNA polymerase, General and specific transcription factors, Regulatory elements in mechanisms of transcription regulation, Transcriptional and post-transcriptional gene silencing. Modifications in RNA: 5'-Cap formation, Transcription termination, 3'-end processing and polyadenylation, Splicing, Editing, Nuclear export of mRNA, mRNA stability #### **UNIT II** **Translation**: Prokaryotic and eukaryotic translation, the translation machinery, Mechanisms of initiation, elongation and termination, Regulation of translation, co- and post translational modifications of proteins. **Protein Localization:** Synthesis of secretory and membrane protein, Import into nucleus, mitochondria, chloroplast and peroxisomes, Receptor mediated endocytosis. **Cancer:** Oncogenes and Tumor Suppressor Genes: Viral and cellular oncogenes, tumor suppressor genes from humans, Structure, Function and mechanism of action of pRB and p53 tumor suppressor proteins ## **UNIT III** Antisense and Ribozyme Technology: Molecular mechanism of antisense molecules, inhibition of splicing, polyadenylation and translation, disruption of RNA structure and capping, Biochemistry of ribozyme; hammer head, hairpin and other ribozymes, strategies for designing ribozymes, Applications of Antisense and ribozyme technologies **Homologous Recombination:** Holliday junction, gene targeting, gene disruption, FLP/FRT and' Cre/Lox recombination, RecA and' other recombinases Molecular Mapping of Genome: Genetic and physical maps, physical mapping and map-based cloning, choice of mapping population, Simple sequence repeat loci, Southern and fluorescence in situ hybridization for genome analysis, Chromosome micro dissection and micro cloning. # **UNIT IV** **Molecular markers in genome analysis:** RFLP, RAPD and AFLP analysis, Molecular markers linked to disease resistance genes, Application of RFLP in forensic, disease. prognosis, genetic counseling, Pedigree, varietal etc. Animal trafficking and poaching; Germplasm maintenance, taxonomy and Bio-diversity # UNIT V **Genome Sequencing:** Genome sizes., organelle genomes, Genomic libraries, YAC, BAC libraries, Strategies for sequencing genome, Packaging, transfection and recovery of clones, Application of Sequencing sequence information for identification of defective genes - 1) Isolation of genomic DNA - 2) Southern blotting - 3) RFLP analysis - 4) Isolation of RNA - 5) Isolation of polyA + RNA - 6) Northern blotting - 7) Preparation of probes - 8) *In vitro* Transcription - 9) *In vitro* translation - 10) Metabolic labeling of proteins and immuno precipitation # M.Sc. Medical Biotechnology Semester—I # Course Title: Biostatistics Course No. MBE 105 Time: 3h MM. Th 80 + IA 20 Course No. MBE 10 NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. ## **Theory** #### Unit I Permutation and Combination, Functions, limits and continuity, Exponential and Logarithmic functions, Vector and Matrices, Algebra of matrices, Determinants and their simple properties, Rank of matrix, Consistency of system of linear equations and solution of linear system of equations. Characteristic equation, Eigen values and Eigen vectors. ## **Unit II** Differential Calculus, Rules of differentiation, Derivatives of implicit functions, Parametric differentiation, Higher derivatives Taylor's theorem, Maclaurin's theorem (without proofs), Maxima and minima, Partial differentiation Integration, Integration by parts, Definite integral, Properties of definite integrals, Differential Equations, Separable variable, homogenous, exact and linear equations of second order. ## **Unit III** Concepts in statistics, Types of Data, presentation of data, types of graphics, relative frequency, cumulative frequency, Measurement of central tendency, Measures of variation, coefficient of variation, Measures of Skewness and Kurtosis, Probability and its applications, Laws of Addition and Multiplication, Compound probability, Baye's Theorem #### **Unit IV** Random Variables and Distributions. Binomial, Poisson, Exponential and Normal Distributions and their applications. Samples and Sampling Distribution, Standard Error, significance level, Degrees of freedom, Tests of significance, tests for proportion, t and F tests Confidence Intervals #### Unit V Contingency tables of (Chi square) tests of goodness of fit and homogeneity. Correlation: Simple, Partial and Multiple Correlation, Methods of averages and least squares, polynomial fitting, Regression Analysis. Analysis of variance for one and two way classification Design of experiments, randomization, replication local control, completely randomized and randomized block design. - 1) Descriptive statistics: Systematic tabular summarization of data (before analysis), measures of central tendency, measures of dispersion, measures of skewness (using calculators). - 2) Correlations (product-moment coefficient, Spearman's rank coefficient) and regression (linear regression, curve fitting). - 3) Data presentation (tables/figures): 1-D and 2-D bar charts, pie diagrams, graphs (using computer software packages). - 4) Statistical distributions: fitting discrete uniform, binomial, Poisson and normal probability distributions to given data - 5) Testing of hypotheses: Tests of significance (mean, standard deviation, correlation coefficient), chi-squared test for goodness of fit, test for independence of attributes, - 6) Non-parametric tests (run test) using calculators and printed tables and using minitab sampling (drawing random samples using random numbers, tables, chits, computer - 7) Programmes for random number generation), design of experiments, ANOVA (oneway and two-way) # M.Sc. Medical Biotechnology Semester—I # Course Title: Communication Skills Course No. MBT 107 Time: 30min ## **NOTE: Seminars** **MM. 50** - Lectures: preparation, objective/s, concepts, contents, sequence, formal proof, interrelationships, logic, conclusions, time management, using audiovisual aids. - > Giving a talk: body language: extempore and prepared talks. - > Preparing for interviews, CV/biodata - ➤ Vocabulary: word power, pronunciations, guessing the meaning of words from the context and body language and using a dictionary - ➤ Review of basic and grammar Punctuation marks: comma, colon, semicolon, full stop, inverted comma. - Avoiding repetitious statements, double positives, double negatives, circular arguments - ➤ Dealing with questions: avoiding circumvention and circular arguments; answering after breaking down long questions into parts. - ➤ MS power point-based presentations - Analysis of formal presentations in the course 3a in terms of actual presentations | | Semester-II (May | y 2012) | | | | | |------------|------------------|---|---------------------------|----------------------|-------------|--| | | | | Examination Scheme | | | | | Sr.
No. | Course Code | Subject | Theoretical Evaluation | | | | | | | | Theory | Internal assessme nt | Total | | | 1 | MBT-201 | Immunology | 80 | 20 | 100 | | | 2 | MBT-202 | Bioinformatics | 80 | 20 | 100 | | | 3 | MBT-203 | Human Physiology and
Developmental Genetics | 80 | 20 | 100 | | | 4 | MBT-204 | Genetic Engineering | 80 | 20 | 100 | | | 5 | MBE-205* | Animal Cell Culture&
Vaccinology * | 80 | 20 | 100 | | | 6 | MBE-206* | Fundamentals of Computer Programming and Algorithum* | 80 | 20 | 100 | | | 7 | MBE-207* | Plant Cell Culture* | 80 | 20 | 100 | | | 8 | MBE-208* | Microbial Technology* | 80 | 20 | 100 | | | 9 | MBT-209 | Seminars | 0 | 50 | 50 | | | 10 | MBT-210 | Lab Course- I (Based on MBT 201, 202, MBE 205/ 206/ 207/ 208) | 0 | 50 | 50 | | | 11 | MBT-211 | Lab Course- II (Based on MBT 203, 204) | 0 | 50 | 50 | | | 12 | MBT-212 | Self Study Paper | Grade
based | | Grade based | | | | Tota | al Marks | | | 650 | | ^{*} Choice based paper: Students need to take one paper out of the choice given. # M.Sc. Medical Biotechnology Semester—II Course Title: Immunology Course No. MBT 201 Time: 3h MM. Th 80 + IA 20 NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. # **Theory** ## **UNIT I** Introduction; Phylogeny of Immune SystemInnate and acquired immunity Clonal nature of immune response Organization and structure of lymphoid organs Nature and Biology of antigens and super antigens #### **UNIT II** Antibody structure and function Antigen - antibody interactions Major Histocompatibility Complex (MHC) BCR & TCR, generation of diversity. Complement system Cells of the Immune system: Hematopoiesis and differentiation #### **UNIT III** Lymphocyte trafficking, B-Iymphocytes, T-Iymphocytes, Macrophages, Dendritic cells, Natural killer and Lymphokine -activated killer cells, Eosinophils, Neutrophils and Mast Cells Regulation of immune response:Antigen processing and presentation, generation of humoral and cell mediated immune responses:Activation of B- and T Lymphocytes ## **UNIT IV** Cytokines and their role in immune regulation:T-cell regulation, MHC restriction Immunological tolerance Cell - mediated cytotoxicity; Mechanism of T cell and NK cell mediated lysis, antibody dependent cell mediated cytotoxicity, macrophage mediated cytotoxicity Hypersensitivity ## **UNIT V** Autoimmunity Transplantation Immunity to infectious agents (interacellular parasites, he1minthcs & viruses) Tumor Immunology AIDS and other Immunodeficiency Hybridoma Technology and Monoclonal antibodies - 1) Blood film preparation and identification of cells - 2) Lymphoid organs and their microscopic organization - 3) Immunization, Collection of Serum - 4) Double diffusion and Immune-electrophoresis - 5) Radial Immuno diffusion - 6) Purification of IgG from serum - 7) Separation of mononuclear cells by Ficol1-Hypaque - 8) Con-A induced proliferation of thymocytes (by MTT method) - 9) Western-blotting - 10) ELISA - 11) Hapten Conjugation and quantitation - 12) Immunodiagnostics (demonstration using commercial kits) # M.Sc. Medical Biotechnology Semester—II **Course Title: Bioinformatics** MM. Th 80 + IA 20 Course No. MBT 202 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit **Theory** **UNIT I** ## **Computers** An overview of computers, microcomputers, VDUs and printer What is programming? Algorithms. Languages and packages: Introduction to MS Office, MS Access, Front Page and introduction to C, Java and SQL (structured querry language) Handling arrays, procedures. Colour, sound and graphics. Use of standard packages ## **UNIT II** **Introduction to PERL:** Scalar variables, strings and numbers, Assignment statements, Arrays, Hashes, Operators, Input from file, Standard Input, Conditional and logical operators, loops, I/O, Input from file named in command line, Regular expression, Pattern matching, Meta symbols, Pattern modifiers, Subroutines. **Applications of PERL in Bioinformatics:** Storing DNA sequence, DNA to RNA transcription, Finding motifs, Counting nucleotides, Generating random numbers, simulating DNA mutation, generating random DNA, Analyzing DNA ## **UNIT III** ## **Biological Sequence Databases:** Overview of various primary and secondary databases that deal with protein and nucleic acid sequences. Databases to be covered in detail are GenBank, EMBL, DDBJ, Swiss Prot, PIR, and MIPS for primary sequences. Various specialized databases like TIGR, Hovergen, TAIR, PlasmoDB, ECDC etc., will also be discussed. Preliminary ideas of query and analysis of sequence information. #### **UNIT IV** ## **Sequence Comparison Methods:** Method for the comparison of two sequences viz., Dot matrix plots, NeedlemanWusch & SmithWaterman algorithms. Analysis of computational complexities and the relative merits and demerits of each method. Theory of scoring matrices and their use for sequence comparison. ## **UNIT V** ## **Database Search Algorithms:** Methods for searching sequence databases like FASTA and BLAST algorithms. Statistical analysis and evaluation of BLAST results. # **Pattern Recognition Methods in Sequence Analysis:** Concept of a sequence pattern, regular expression based patterns. The use of pattern databases like PROSITE and PRINTS. Concept of position specific weight matrices and their use in sequence analysis. Theory of profiles and their use with special reference to psiBLAST. Markov chains and Markov models and their use in gene finding. Concept of HMMS, the Forward backward and the Viterbi algorithm. The Baum Welch algorithm for training a HMM. Use of profile HMM for protein family classification. ## **Practicals** Computational modeling of genomic proteomic, evolutionary tree designing on databases, network search on genomic and proteomic databases # M.Sc. Medical Biotechnology Semester—II Course Title: Human Physiology and Developmental Genetics MM. Th 80 + IA 20 Course No. MBT 203 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. ## **Theory** #### UNIT I Introduction to brain and neurobiology. Sight and perception, hearing and balance, smell, taste, touch, pain, analgesics. Skin, hair. Muscles, movement, rheumatoid disorders. nervous system, skin, glands. Heart and blood circulation, blood clotting, microvasculature. Lungs, surfactants. Body fluids, fluid balance, parenteral solutions, renal physiology. # **UNIT II** Hormones and homeostasis. Digestive system, reproductive system, nervous system. Genital system, reproductive biology and contraception. Diseases of the digestive system, breathing, circulation, Mechanisms of drug action #### **UNIT III** Structure, chemistry, dynamics and regulation of sperm locomotion, capacitation and egg-surface targeting. Molecular biology, cytology and biochemistry of ovogenesis: Synthesis and storage of maternal transcripts, proteins and cell organelles. rDNA amplification in amphibia; transcription on lampbrush chromosomes, ovulation and hormonal control in mammals. #### **UNIT IV** Molecular and cellular biology of fertilization: acrosome reaction and signal transduction, monospermy and species-specificity. Egg activation, early cleavages and blastocyst formation in mammals and biochemical and cellular changes during the passage down the oviduct to the uterus ## **UNIT V** Implantation and formation of the placenta in mammals. Gastrulation in mammals-formation of primitive streak, morphogenetic movements and neural induction. Organogenesis and foetal development. Pattern forming genes and expression in Drosophila and mammalian embryos Development of the mammalian brain-cerebral cortex-cell lineages Lens development-fibre differentiation, programmed morphogenetic histogenetic cell death (apoptosis). Erythropoeisis, myelopoeisis. Ageing - 1) Culture in *vitro* of chick embryo by New's technique and neural induction by transplanted Hensen's node. - 2) Filter-paper ring culture of chick embryos. - 3) Chick embryo limb bud organ culture and observation of cell death in interdigital regions by neutral red staining. - 4) Sex-linked inheritance in Drosophila. - 5) Non-allelic and allelic interaction in Drosophila. - 6) Linkage study in Drosophila. - 7) Allelic and heterozygotic frequencies in human populations. - 8) Analysis of quantitative traits: frequency distribution, standard deviation and variance. - 9) Karyotyping human cells and chromosomal in situ localization of genes. - 10) 10.Cell division: mitosis and meiosis. - 11) Mutants of Drosophila. Sex liked lethals in Drosophila # M.Sc. Medical Biotechnology Semester—II # Course Title: Genetic engineering Course No. MBT 204 Time: 3h MM. Th 80 + IA 20 NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. ## **Theory** #### UNIT I Scope of Genetic Engineering, Milestones in Genetic Engineering. Isolation of enzymes, DNA sequencing, synthesis and mutation, detection and separation cloning, gene expression. Cloning and patenting of life forms. Genetic engineering guidelines, Molecular Tools and Their Applications, Restriction enzymes, modification enzymes, DNA and RNA markers ## **UNIT II** Nucleic Acid Purification, Yield Analysis, Nucleic Acid Amplification and its Applications, Gene Cloning Vectors, Restriction Mapping of DNA Fragments and Map Construction, Nucleic Acid Sequencing, cDNA Synthesis and Cloning, mRNA enrichment, reverse transcription, DNA primers, linkers, adaptors and their chemical synthesis, Library construction and screening, Alternative Strategies of Gene Cloning ## **UNIT III** Cloning interacting genes-Two-and three hybrid systems, cloning differentially 'expressed genes. Nucleic acid microarray arrays Site-directed Mutagenesis and Protein Engineering, How to Study Gene Regulation? DNA transfection, Northern blot, Primer extension, S1 mapping, RNase protection assay, Reporter assays Expression strategies for heterologous genes, Vector engineering and codon optimization, host engineering, in vitro transcription and translation, expression in bacteria expression in yeast, expression in insect cells, expression in mammalian cells, expression in plants. ## **UNIT IV** Processing of recombinant proteins: Purification and refolding, characterization of recombinant proteins, stabilization of proteins. Phage Display, T-DNA and Transposon Tagging. Role of gene tagging ingene analysis. Identification and isolation of genes through T-DNA or Transposon. #### **UNIT V** Transgenic and gene knockout technologies. Targeted gene replacement, chromosome engineering. Gene therapy: Vector engineering strategies of gene delivery, gene replacement/augmentation, gene correction, gene editing, gene regulation and silencing. - 1) Bacterial culture and antibiotic selection medias. Prepration of competent cells. - 2) Isolation of plasmid DNA. - 3) Isolation of lambda phage DNA. - 4) Quantitation of nucleic acids. - 5) Agarose gel electrophoresis and restriction mapping of DNA - 6) Construction of restriction map of plasmid DNA. - 7) Cloning In plasmid/phagemid vectors. - 8) Preparation, of helper phage and its titration\ - 9) Preparation of single stranded DNA template - 10) DNA sequencing - 11) Gene expression in E. coli and analysis of gene product - 12) PCR and Reporter Gene assay (Gus/CAT/b-GAL) # M.Sc. Medical Biotechnology Semester—II # Course Title: Animal Cell culture and Vaccinology MM. Th 80 + IA 20 Course No. MBE 205 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. # **Theory** #### UNIT I Equipments and materials for animal cell culture technology, Primary and established cell line cultures. Introduction to the balanced salt solutions and simple growth medium, Brief discussion on the chemical, physical and metabolic functions of different constituents of culture medium, Role of carbon dioxide. ## **UNIT II** Role of serum and supplements, Serum & protein free defined media and their application, Measurement of viability and cytotoxicity, Biology and characterization of the cultured cells, measuring parameters of growth, Basic techniques of mammalian cell culture *in vitro* disaggregation of tissue and primary culture maintenance of cell culture cell separation ## **UNIT III** Scaling-up of animal cell culture, Cell synchronization ,Cell cloning and micromanipulation, Cell transformation, Application of animal cell culture, Apoptosis History of Vaccinology, conventional approaches to vaccine development, live attenuated and killed vaccines, adjuvants, quality control, preservation and monitoring of microorganisms in seed lot systems. #### **UNIT IV** Instruments related to monitoring of temperature, sterilization, environment, quality assurance and related areas, production techniques, growing the microorganisms in maximum titre, preservation techniques to maintain good antigen quality, freeze drying #### **UNIT V** Introduction to newer vaccine approaches namely- subunit vaccines, synthetic vaccines, DNA vaccines, virus like particles, recombinant vaccines, edible vaccines, nanoparticles in vaccine delivery systems - 1) Preparation of tissue culture medium and membrane filtration - 2) Preparation of single cell suspension from spleen and thymus - 3) Cell counting and cell viability - 4) Macrophage monolayer from PEC, and measurement of phagocytic activity - 5) Trypsinization of monolayer and sub culturing - 6) Cryopreservation and thawing - 7) Measurement of doubling time - 8) Inoculation of embryonated chicken eggs for cultivation of virus - 9) Harvesting of virus from the inoculated embryo - 10) Immunization of laboratory animals - 11) Titration of antibodies against the recombinant protein | | Semester-I | II (Dec. 2012) | | | | | |------------|----------------|--|---------------------------|----------------------|----------------|--| | | | | Examination Scheme | | | | | Sr.
No. | Course
Code | Subject | Theoretical Evaluation | | | | | | | | Theory | Internal assessme nt | Total | | | 1 | MBT-301 | Medical Microbiology and Biology of Infectious diseases | 80 | 20 | 100 | | | 2 | MBT-302 | Stem Cell Biology and Somatic and
Germ Cell Engineering | 80 | 20 | 100 | | | 3 | MBT-303 | Human Genetics and Genomics | 80 | 20 | 100 | | | 4 | MBT-304 | Drug Designing and
Pharmacogenomics | 80 | 20 | 100 | | | 5 | MBE-
305* | Diagnostics * | 80 | 20 | 100 | | | 6 | MBE-
306* | Drug Designing and
Chemiinformatics* | 80 | 20 | 100 | | | 7 | MBE-
307* | Environmental Biotechnology* | 80 | 20 | 100 | | | 8 | MBE-
308* | Plant Stress Biology* | 80 | 20 | 100 | | | 9 | MBT-309 | Lab Course- I (Based on MBT 301-303) | 0 | 50 | 50 | | | 10 | MBT-310 | Lab Course- II (Based on MBT 304, 305/306/307/308) | 0 | 50 | 50 | | | 11 | MBT-311 | Seminars | 0 | 50 | 50 | | | 12 | MBT-312 | Self Study paper | Grade
based | | Grade
based | | | | | Total Marks | | | 650 | | ^{*} Choice based paper: Students need to take one paper out of the choice given. # M.Sc. Medical Biotechnology Semester—III Course Title: Medical Microbiology and Biology of infectious diseases MM. Th 80 + IA 20 Course No. MBT 301 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. ## **Theory** #### UNIT I **Bacteria**: Representative diseases to be studied in detail are - tetanus, diphtheria, cholera, typhoid, tuberculosis, leprosy, plague, and syphilis. Infections caused by anaerobic bacteria, spirochetes, chlamydia, rickettsiae. **Viruses**: Representative diseases to be studied in detail are - viral hepatitis, influenza, rabies, polio and AIDS and viral cancers. **Fungi**: Diseases to be taken up in following categories: superficial, subcutaneous, systemic and opportunistic mycoses. **Protozoa**: Diseases to be discussed are - amoebiasis, toxoplasmosis, trichomoniasis & leishmaniasis. #### **UNIT II** Disease burden: microbial, viral, fungal and parasitic. Investigation of epidemics Methods of culturing and assaying: bacterial, viral and parasitic. Classification: fungal, protozoal, helminthic, bacterial and viral Replication of DNA, RNA+ve and RNA-ve viruses, retroviruses ## **UNIT III** Viral vaccines: conventional: killed/attenuated; DNA; peptide; recombinant proteins. Sterilization techniques: biohazard hoods; containment facilities, BSL 2, 3, 4. ## **UNIT IV** Bacterial and viral vectors. Biological warfare agents Mode of action of antibiotics and antiviral: molecular mechanism of drug resistance (MDR) Anti-viral chemotherapy. Anti-fungal chemotherapy. #### **UNIT V** Hospital-acquired infections (nosocomial), immune compromised states. Water and waste management for water-borne diseases. Modern approaches for diagnosis of infectious diseases: Basic concepts of gene probes, dot hybridization and PCR assays. - Staining techniques. Haemagglutination test. Commercial kits-based diagnosis. Antibioticsensitivity(bacterial). Electron microscopy (demo) - 6) Bacterialculture - 7) Agar gel diffusion 8) ELISA - 9) Preparation of axenic cultures ## M.Sc. Medical Biotechnology Semester—III Course Title: Stem Cell Biology & Somatic and Germ Cell Engineering MM. Th 80 + IA 20 Course No. MBT 302 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. ## **Theory** #### UNIT I **Introduction to stem cells -** Embryonic Stem Cells, Adult stem cells, Molecular basis Pluripotentency and its application, Stem cell niches, Stem cell renewal, Cell cycles regulators in stem cells #### **UNIT II** Epigenetic mechanism of cellular memory, Germ line Stem Cells, Stem Cells and Cloning, Nuclear cloning and Epigenetic reprogramming; Growth Factors and Signal Cascades BMP, Nodal, Wnt, Notch and Retenoid signaling during gastrulation ## **UNIT III** **Tissue and organ development-** Differentiation in early development, Primordial germ cells in mouse and Human, Bone Marrow Mesenchymal Stem Cells , Hematopoietic Stem Cells: Identification, Characterization, Assays and Cell Lineages #### **UNIT IV** Applications- Neurons Stem Cells and Potential Therapies, Spinal cord injury, Strategies Using Cell Therapy to Induce Cardiomyocyte Regeneration in Adults with Heart Disease, Stem cell therapy: Current State and Future Perspectives, Embryo culture, transplantation and teratogenesis. ## **UNIT V** Teratomas. Organ culture. Artificialblood.Amniocentesis-karyology and biochemical diagnostics-genetic counselling.Mammalian embryo fusion-allopheny. Transgenesisgene transfers, knock-outs. Somatic cell fusion and somatic cell genetics. - 1) Animal cell tissue culture sterile working techniques. - 2) Chick embryo fibroblast primary cell cultures and mouse chorionic villus cells. - 3) Induced ovulation in mouse, collection of oviducal eggs and in vitro fertilization, culture in *vitro* of mouse embryos to the blastocyst state. - 4) Transferring a foreign gene (e.g., chicken globin gene) into mouse fertilized eggs and transplantation of transformed mouse blastocysts in foster females. - 5) Microinjection or electroporation of ES cells with foreign DNA (e.g., chicken globin gene, transplantation into mouse blastocyst and transfer to foster females. - 6) Diagnosing tail DNA of chimeric mouse pups for transferred genes fusing HeLa and chicken erythrocyte cells in vitro for heterokaryons. # M.Sc. Medical Biotechnology Semester—III # Course No. MRT 303 MM. Th 80 + IA 20 Course No. MBT 303 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. ## **Theory** #### UNIT I History and development of human genetics; organization of the human genome. Genes and chromosome-structure, function and inheritance. Repetitive DNA in human genome-Alu and SINE repeats. Functional organization of centromeres and telomeres, telomerases and centrosomes Methods for genetic study in man – pedigree analysis, chromosomal analysis, biochemical analysis. #### **UNIT II** Somatic cell genetics (somatic cell hybrids, radiation hybrids, monochromosome hybrid panels, gene mapping, hybridoma technology, polyclonal and monoclonal antibodies), molecular genetic analysis. Tissue culture techniques, long-term and shorts-term cultures, lymphoblastoid cell lines; congenital abnormalities; clinical aspects of autosomal and sex chromosomal disorders; inborn errors of metabolism, haemoglobinopathies. #### **UNIT III** Human genome mapping – genetic mapping, physical mapping-restriction fragment length polymorphism, pulse field gel electrophoresis, yeast artificial chromosomes, bacterial artificial chromosomes, P1 derived artificial chromosomes, expressed sequence tags, sequence-tagged sites, microsatellites and single nucleotide polymorphisms. ## **UNIT IV** Inherited human diseases-single gene diseases, complex traits. Identification and isolation of disease genes – positional cloning, functional cloning, DNA and cDNA microarrays. #### **UNIT V** Yeast two-hybrid system. Statistical methods for genetic analysis of complex traits. Cancer genetics. Immunogenetics; pre-natal diagnosis-chorionic villus sampling, amniocentesis Pre-implantation diagnosis. Genetic counselling. Gene therapy-concept, vectors, gene targeting and tissue-specific Expression, Ethics and human genetics. Introduction to pharmacogenomics and toxicogenomics. - 1) Pedigree analysis - 2) Chromosome preparations-PHA-stimulated short-term blood cultures, air-dried chromosome preparations. - 3) G-banding of chromosomes. - 4) Karyotype preparation. - 5) In situ hybridization-FISH (example with centromeric and telomeric probes). - 6) Polyacrylamide gel electrophoresis-detection of enzyme (for example-G6PD, an Xlinked - 7) enzyme) - 8) RFLP-radioactive and non-radioactive probes (for example with actin gene). - 9) PCR-PAGE (radioactive/non-radioactive) for microsatellite marker for linkage analysis. - 10) PCR-RFLP-based genotyping. - 11) PCR-SSCP for mutation detection. - 12) Single nucleotide polymorphism typing. M.Sc. Medical Biotechnology Semester—III **Course Title: Drug Designing and Pharmacogenomics** MM. Th 80 + IA 20 Course No. MBT 304 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. Theory **UNIT I** Concept of external and internal coordinates and algorithms for their interconversion. Different representations of molecular structures and their relative merits and demerits. **UNIT II** Experimental Methods for Molecular Structure Determination: Brief account of structure determination by X-ray crystallography and NMR spectroscopy. Validation of experimentally obtained NMR structures. The Protein Data Bank (PDB) and the Nucleic Acid Data Bank (NDB). The PDB and the mmCIF file formats for the storage and dissemination of molecular structures. **UNIT III** Conformational Analysis: Concept of free energy of molecules. Introduction to various force fields and their relative merits and demerits. Techniques for Molecular energy minimization, Monte Carlo and Molecular Dynamics simulation. **UNIT IV** Molecular Modelling: Methods of molecular modeling including homology modeling, threading and ab initio protein structure prediction together with their relative merits and demerits. Methods for structure structure comparison of macromolecules with special reference to proteins. ## **UNIT V** # **Drug Design:** General ideas of drug designing, 2D and 3D QASR, concept of a pharmacophore and pharmacophore based searches of ligand databases. Concepts of COMFA. Methods for simulated docking. - 1) Introduction to computational software used in dru design. - 2) Sketching and energy minimization of drug molecules - 3) Computation of molecular properties of drug molecules - 4) Development of linear regression models - 5) Development of MLR models - 6) Development of QSAR models by using training and test sets - 7) Development of multi-target QSAR models - 8) Development of NLR models # M.Sc. Medical Biotechnology Semester—III Course No. MRF 305 MM. Th 80 + IA 20 Course No. MBE 305 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. ## **Theory** #### UNIT -I Quality control, GMP and GLP, records. Biochemical disorders. Immune disorders. Infectious diseases. Parasitic diseases. Genetic disorders chromosomal disorders, single cell disorders and complex traits. #### **UNIT II** Chromosomal disorders: autosomal; sex chromosomal; karyotype analysis. G-banding, in *situ* hybridization (FISH and on-FISH), and comparative genomic hybridization (CGH). Cancer cytogenetics: spectral karyotyping. #### **UNIT III** DNA diagnostics: PCR based diagnostics; ligation chain reaction, southern blots diagnostics, array-based diagnostics, DNA sequencing, genetic profiling, single nucleotide polymorphism. Haemoglobinopathies. #### **UNIT-IV** Neuro developmental disorders. Neuro degenerative disorders. Dynamic mutations. Biochemical diagnostics: inborn errors of metabolism, haemoglobinopathies, mucopolysaccharidoses, lipidoses, and glycogen storage disorders. ## **UNIT V** Immunodiagnostics: diagnosis of infectious diseases, respiratory diseases (influenza, etc.)Viral diseases-HIV etc., bacterial diseases, enteric diseases, parasitic diseases and mycobacterium diseases., Phage display, immunoarrays, FACs | | Semester-I | V (May 2013) | | | | | |------------|------------------|---|--|----------------|-------|--| | | | Subject | Examination Scheme Theoretical Evaluation | | | | | Sr.
No. | Course
Code | | | | | | | | | | Theory | Internal | Total | | | | | | | assessme
nt | | | | 1 | MBE-
401* | Management issues in Biotechnology* | 80 | 20 | 100 | | | 2 | MBE-
402* | IPR and Biotechnology* | 80 | 20 | 100 | | | 3 | MBE-
403* | Social, Ethical and Legal Issues in
Medical Biotechnology* | 80 | 20 | 100 | | | 4 | MBE-
404* | Bioentrepreneurship* | 80 | 20 | 100 | | | 5 | MBT-405 | Seminar | | 50 | 50 | | | 3 | MBT-406 | Dissertation | 0 | 300 | 300 | | | | | Total Marks | | | 550 | | | | Grand Tot | al of all the four semesters | 650+650+650+550= 2500 | | | | ^{*} Choice based paper: Students need to take two papers out of the choice given. # M.Sc. Medical Biotechnology Semester—IV # Course Title: Management Issues in Biotechnology Course No. MBE 401 MM- Th 80 + IA 20 Course No. MBE 401 Time: 3hrs NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. # **Theory** ## Unit I Introduction to Biotechnology, Structure of a Biotechnology Company, Scientific Principles, Start-up of Biotechnology Company, New Product Development, Management Styles and Strategies, #### **Unit II** Sales & Marketing Principles, Sales & Marketing Principles, Intellectual Property, Principles in Biotechnology, Legal Issues in Biotechnology, Moral Issues in Biotechnology ## **Unit III** Health Care Overview and Reimbursement in Biotechnology (The concept of return investment), Business Communication, Managerial Economics Human Resource Management ## **Unit IV** Management Information Systems, Logistics & Supply Chain Management, Decision Science, Sales and Distribution, Financial and Cost Accounting # Unit V Intellectual Property Rights,Fundamentals of Marketing,Research Methodology, Principles of Management,Marketing Management, Strategic Management ## M.Sc. Medical Biotechnology Semester—IV Course Title: Social, Ethical and Legal Issues in Medical Biotechnology MM. Th 80 + IA 2 Course No. MBE 403 Time: 3h NOTE: In all ten questions will be set, two from each unit. Students are required to attempt five questions i.e. one from each unit. # **Theory** #### **UNIT I** **IPR** - patents and copyrights. Patentability of life forms with special reference to Microorganisms, Pharmaceutical industries, Biodiversity, Naturally occurring substances. Human genome and IPR. Issue on IPR in Public-Private partnership. Availabilities of Patent facilitating funds, Substantive Patent Law Treaty (SPLT), Word patent, European Patent. #### UNIT II **Social**- genetic discrimination: insurance and employment, human cloning, foeticide, sex determination. Religious consideration in stem cell therapy ## **UNIT III** **Ethical**: somatic and germ line gene therapy, clinical trials, the right to information, ethics committee function. Social and ethical issues Ethics in human stem cell research FDA product and regulatory considerations in stem cell ## **UNIT IV** **Biosafety** - Definition, Requirement, Biosafety containment facilities, biohazards, genetically modified organisms (GMOs), living modified organisms (LMOs), Biosafety for human health and environment designing and management of laboratory and culture room as per the norm of GLP, GMP and FDA. # **UNIT V** **Management-**Planning, Organizing, Leading & Controlling; Concepts and characteristics of information; Importance of MIS; Communication - type, channels & barriers; Financial management, planning and control